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Abstract. Cloud detection and cloud properties have significant applications in weather forecast, signal attenuation analysis, 

and other cloud-related fields. Cloud image segmentation is the fundamental and important step to derive cloud cover. However, 

traditional segmentation methods rely on low-level visual features of clouds, and often fail to achieve satisfactory performance. 15 

Deep Convolutional Neural Networks (CNNs) are able to extract high-level feature information of object and have become 

the dominant methods in many image segmentation fields. Inspired by that, a novel deep CNN model named SegCloud is 

proposed and applied to accurate cloud segmentation based on ground-based observation. Architecturally, SegCloud possesses 

symmetric encoder-decoder structure. The encoder network combines low-level cloud features to form high-level cloud feature 

maps with low resolution, and the decoder network restores the obtained high-level cloud feature maps to the same resolution 20 

of input images. The softmax classifier finally achieves pixel-wise classification and outputs segmentation results. SegCloud 

has powerful cloud discrimination ability and can automatically segment the whole sky images obtained by a ground-based 

all-sky-view camera. Furthermore, a new database, which includes 400 whole sky images and manual-marked labels, is built 

to train and test the SegCloud model. The performance of SegCloud is validated by extensive experiments, which show that 

SegCloud is effective and accurate for ground-based cloud segmentation and achieves better results than traditional methods. 25 

Moreover, the accuracy and practicability of SegCloud is further proved by applying it to cloud cover estimation. 

1 Introduction 

Clouds are among the most common and important meteorological phenomena, covering more than 66% of the global surface 

(Rossow and Schiffer, 1991; Carslaw and Ken, 2009; Stephens and Graeme, 2005; Zhao et al., 2019). The analysis of cloud 

condition and cloud cover plays a key role in various applications ( Zhang and Li, 2013; Zhang et al., 2013; Li et al., 2018; 30 

Ma et al., 2018; Bao et al., 2019; Li et al., 2015; Zhang et al., 2017). One can accurately acquire localized and simultaneous 

cloud condition because of the high temporal and spatial resolution of ground-based observed clouds. Many ground-based 

cloud measurement devices, such as radar and lidar, are used to detecting clouds (Zhao et al., 2014; Garrett and Zhao, 2013; 

Huang et al., 2012). Especially, ground-based all-sky-view imaging devices have been increasingly developed in decades 

(Long et al., 2001; Genkova et al., 2004; Feister and Shields, 2005; Tapakis and Charalambides, 2013) because of their larger 35 
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field of view and low cost. Accurate cloud segmentation is a primary precondition for cloud analysis of ground-based all-sky-

view imaging equipment, which can improve the precision of derived cloud cover information and help meteorologists to 

further understand climatic conditions. Therefore, accurate cloud segmentation has become a hot research topic, and plenty of 

algorithms have been proposed for cloud analysis of ground-based all-sky-view imaging  instrument in recent years (Long et 

al., 2006; Kreuter et al., 2009; Heinle et al., 2010; Liu et al., 2014; Liu et al., 2015).  5 

 

Traditional cloud segmentation methods usually use “color” as a measurement criterion to recognize clouds and clear sky. This 

is because that cloud particles have similar scattering intensity in blue and red bands, while the air molecules have more 

scattering intensity in blue band than that in red band due to the Mie scattering theory. So the blue and red channel values of a 

cloud image is available as identifying features for cloud segmentation. For example, Long et al. (2006) and Kreuter et al. 10 

(2009) proposed a fixed-threshold algorithm that used the ratio of red and blue channel values to distinguish clouds and clear 

sky. In more detail, the pixels whose ratio of red and blue channel values are greater than the defined fixed threshold are 

identified as cloud, otherwise, the pixels are identified as clear sky. Similarly, Heinle et al. (2010) treat the difference of red 

and blue channel values as a judgement for cloud detection. Souzaecher et al. (2004) complement saturation as a characteristic 

to identify the clouds on the basis of red and blue channel values. These fixed-threshold algorithms mentioned above, which 15 

strongly depend on the cameras’ specifications and atmospheric conditions, are not adaptable for varied sky conditions (Long 

and Charles, 2010). Graph-cut method (Liu et al., 2015) and superpixel segmentation algorithm (Liu et al., 2014) are also 

applied for cloud segmentation to overcome the drawback of above fixed-threshold algorithms. Although certain improvement 

can be achieved, the performance of such algorithms still remains unsatisfactory in real measurement applications. Therefore, 

accurate and robust cloud segmentation algorithms need to be well developed. 20 

 

CNNs are outstanding and powerful object recognition technology, which have been applied to many fields widely in recent 

years, such as image and speech recognition (LeCun and Bengio, 1998; Taigman et al., 2014). CNNs also have achieved a 

breakthrough progress in cloud analysis too (Xiao et al., 2019; Shi et al., 2016; Liang et al., 2017; Shi et al., 2017) because of 

its strong ability in cloud feature representation and advance cloud feature extraction to accurately identify clouds (Lecun et 25 

al., 2015). For example, Yuan et al. (2018) proposed an edge-aware CNN for satellite remote-sensing cloud image 

segmentation, which is proved to have superior detection results near cloud boundaries. Xiao et al. (2019) proposed an 

automatic classification model TL-ResNet152 to achieve the accurate recognition of ice crystal in clouds. Zhang et al. (2018) 

proposed a CloudNet model for ground-based observed cloud categorization, which can surpass the progress of the other 

traditional approaches. However, few studies have evaluated the accuracy of CNNs in segmenting cloud images from ground-30 

based all-sky-view imaging instrument. Almost no prior works have evaluated the reliability of the local cloud cover derived 

by the segmentation results of CNNs. 
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In this paper, we proposed a novel CNN model named SegCloud for accurately segmenting the cloud images from our self-

made ground-based all-sky-view camera. The architecture of the proposed SegCloud is straightforward and clear, which 

possesses symmetric encoder-decoder structure followed by a softmax classifier. SegCloud can automatically segment the 

obtained whole sky images, and avoids the misrecognition caused by the traditionally color-based threshold methods because 

of its powerful cloud discrimination. A new database is also created manually to train and test the SegCloud model, which 5 

consists of 400 whole sky images and the corresponding annotated labels. Extensive experimental results have shown that the 

proposed SegCloud model has effective and superior performance for cloud segmentation especially the advantage of 

recognizing the area near the sun. Moreover, the local cloud cover calculated by SegCloud model has high correlation with 

human observation, which not only further proves the accuracy of SegCloud but also provides a practical reference for future 

automatic cloud cover observation. 10 

 

The main contributions of this paper are the following: 

 A novel CNN architecture is proposed for efficient and accurate whole sky image segmentation, outperforming the 

traditional cloud segmentation methods. 

 A new cloud segmentation database is built for training the SegCloud model that includes 400 whole sky images and 15 

corresponding manual labels.  

 The monthly cloud cover computed by SegCloud is compared with the human observation, and further prove the 

applicability of SegCloud in the meteorological practice. 

The rest of this paper is organized as follows. In Sect. 2, the all-sky-view camera instrument and cloud segmentation database 

we used in experiment are described. The SegCloud architecture is introduced in Sect. 3.  The experimental details and results 20 

are presented in Sect. 4. Finally, conclusion and future work are depicted in Sect. 5. 

2 Instrument and data description 

In this work we use the sky images captured by the ground-based all-sky-view camera modeled as ASC100. The ASC100 is 

developed by Hefei Institute of Physical Science, Chinese Academy of Sciences (Tao et al., 2019), and is deployed on the 

rooftop of Anhui Air Traffic Management Bureau, Civil Aviation Administration of China. The appearance and functional 25 

specifications of ASC100 are shown in Fig. 1. The basic imaging component of ASC100 is a digital camera equipped with a 

fish-eye lens with 180° field view angle. The digital camera faces the sky directly to capture whole sky images, and no 

traditional solar occulting devices, such as sun tracker or black shading strip, are required. To obtain whole sky images which 

have similar range of luminance to that observed through the human visual system, the digital camera snapshots and fuses ten 

photos with different (from low to high) exposure time to one whole sky image using high dynamic range (HDR) technique. 30 

Fig. 1(b) presents the obtained whole sky image, which has RGB color with a resolution of 2000 × 1944 pixels. The ASC100 

is programmed to automatically capture whole sky images every ten minutes during the daytime, and transfers those images 
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to a web-based data server in real time. The ASC100 device is completely sealed and the built-in fan and heater ensure the 

ASC100’s internal environment stable.  

 

To evaluate the cloud segment algorithm comprehensively, the whole sky images captured by ASC100 are collected, and a 

new database called Whole Sky Image SEGmentation (WSISEG) database is built by ourselves, as shown in Figure 2(c). The 5 

WSISEG database consists of 400 whole sky images that covering various cloud cover under different weather condition. 

These images are resized to 480 × 450 resolution to accommodate the input size of CNN model, and their labels are manually 

created using photograph editing software. Different from the existing public database whose images are manually cropped 

from whole sky images and the areas near or including the sun and horizon are avoided (Li et al., 2011; Dev et al., 2017), our 

database reflects complete whole sky condition. Thus the analysis of the whole sky condition can be achieved, and the 10 

performance of the segmentation algorithm in the areas near the sun and horizon also can be verified on our database. The 

annotated images of the proposed WSISEG database are divided into a training set (340 annotated images) and a test set (60 

annotated images). The images from the test set are specially selected to cover different cloud types and cloud cover to 

comprehensively test the performance of the SegCloud model. The complex air condition images, such as cloud images under 

heavy haze and fog, are not included in WSISEG database. 15 

3 Cloud image segmentation approach 

Detecting clouds from whole sky images remains challenging for traditional cloud segmentation methods based on low-level 

visual information. CNNs have the ability to mine the high-level cloud feature representation and are naturally considered as 

a novel choice for solving cloud segmentation problems. Thus, the SegCloud model is proposed and applied for whole sky 

image segmentation. In this section, we first describe an overall layout of SegCloud model (Sect. 3.1), and then elaborate the 20 

training process of SegCloud model (Sect. 3.2). 

 

3.1 SegCloud architecture 

SegCloud is an optimized CNN model and mainly focuses on the end-to-end cloud segmentation task. As shown in Fig. 3, 

SegCloud possesses symmetric encoder-decoder structure followed by a softmax classifier. SegCloud evolves from an 25 

improvement of VGG-16 network (Simonyan and Zisserman, 2014). The VGG-16 network is known as one of the best CNN 

architectures for image classification, which achieves huge success on ImageNet Challenge on 2014 and has been applied in 

many other fields (Wang et al., 2016). In this study, we improve the VGG-16 network and propose our SegCloud model, by 

replacing the fully connected layers of the original VGG-16 network with the decoder network, to achieve end-to-end cloud 

image segmentation. SegCloud can take a batch of fixed-size whole sky images as inputs. The encoder network transforms the 30 

input images to high-level cloud feature representation, while the decoder network enlarges the cloud feature maps extracted 
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from the encoder network to the same resolution of input images.  Finally the outputs of decoder network are fed to a softmax 

classifier to classify each pixel and produce the segmentation prediction. 

 

3.1.1 Encoder Network 

The encoder network of SegCloud consists of ten convolutional layers and five max-pooling layers. Each convolutional layer 5 

contains three operations - convolution, batch normalization (Ioffe and Szegedy, 2015), and Rectified Linear Units (ReLU) 

activation (Hinton, 2010). Firstly, the convolution operation accept the input feature maps and produces a set of output feature 

maps using a trainable filter bank with size of 3 × 3 window and a stride of 1. In order to accelerate the convergence of 

SegCloud model and alleviate the vanishing gradient problem during the later training process, the batch normalization are 

then used to normalize these obtained feature maps. Then the following ReLU activation is applied to add the nonlinear 10 

expression ability of SegCloud model.  In general, the shallow convolutional layers tend to capture the fine texture, such as 

shape and edge, while the deeper convolutional layers compute more high-level and complex semantic features using these 

obtained shallow layer features (Liang et al., 2017). The other essential content of encoder network is max-pooling layers. 

They are located separately after the convolutional layers, and achieve more translation invariance for robust cloud image 

segmentation. Each max-pooling layer subsample the input feature maps with 2 × 2 window and a stride of 2. So the size of 15 

output feature maps is reduced by half and more predominant features are extracted. Through ten convolutional layers and five 

max-pooling layers, the high-level and small-size cloud feature maps are finally formed for further pixel-wise cloud 

segmentation. 

 

3.1.2 Decoder Network  20 

The goal of decoder network is to restore the obtained high-level cloud feature maps to the same resolution of input images 

and to achieve end-to-end cloud image segmentation. The decoder network consists of five up-sampling layers and ten 

convolutional layers. Each up-sampling layer up-samples their input feature maps and produces the sparse double-size feature 

maps, while each convolutional layer tends to densify these obtained sparse feature maps to produce more dense segmentation 

results. In order to further ensure the segmentation accuracy of whole sky images, the up-sampling layer uses the feature 25 

information from the encoder network to perform up-sampling. As shown by black arrows in Fig. 3, the first four up-sampling 

layers use pooling indices from respectively corresponding max-pooling layers to perform up-sampling. The pooling indices 

is the locations of the maximum value in each max-pooling window of feature maps, which is proposed by Badrinarayanan et 

al. (2017) to make sure the accurate feature restoration with less computational cost during inference. Thus, we introduce 

pooling indices into our first four up-sampling layers, and ensure effectively restore high-level cloud feature maps.  30 

 

Although pooling indices can achieve less computational cost, they may lead to a slight loss of cloud boundary details.  Both 

the high-level semantic information and the edge property play an important role to segment whole sky images. Thus, the last 

up-sampling layer directly use the whole feature maps duplicated by first max-pooling layers to perform up-sampling and 
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improve cloud boundary recognition. The specific operation are divided into three steps: (1) the up-sampling layer firstly uses 

bilinear interpolation method to up-sample the feature maps of nearest convolutional layers, and obtains output feature maps 

with the size doubled; (2) the feature maps from first max-pooling layer of encoder network are duplicated; (3) the feature 

maps obtained from (1) and (2) are concatenated to produce the final up-sampling feature maps. To sum up, through these five 

up-sampling layers, high-level cloud feature maps are restored to the same resolution of input images step by step.  5 

 

3.1.3 Softmax classifier 

The softmax classifier is located after decoder network to achieve final pixel-wise cloud classification, i.e. cloud image 

segmentation. Softmax classifier calculates the class probability of every pixel from feature maps, through the classification 

formula defined as follows:  10 

softmax(𝑥𝑖) =  
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)𝑗
                          (1) 

where 𝑥𝑖 , 𝑥𝑗  is the feature value of the ith and jth class respectively. The output of the softmax classifier is a 3-channel 

probability image, where 3 is the number of categories (cloud, sky and background areas, such as sun and surrounding building). 

The predicted results of each pixel are the class with maximum probability. Thus, the final segment results output. 

 15 

3.2 Training details of the SegCloud model 

To apply SegCloud to cloud image segmentation, SegCloud must be trained firstly using the training set of WSISEG database. 

Before training the SegCloud, local contrast normalization is performed on the training set, to further accelerate training 

convergence of the SegCloud. Thereafter, SegCloud is trained with a mini-batch gradient descent using the TensorFlow 

software package named and running on an NVIDIA GeForce GTX1080. Each batch size is set as 10 and the training process 20 

uses momentum parameters with a decay of 0.9 (Sutskever et al., 2013). SegCloud is trained in 26,000 epochs with learning 

rate 0.006. SegCloud uses cross-entropy loss function defined in the following equation as the objective optimization function:  

loss =  −
1

𝑁
∑ 𝑦𝑗

𝑡𝑁
𝑗=1 log 𝑦𝑗  ,                                                                                                                                         (2)   

where 𝑁  is the batch size, 𝑦𝑗
𝑡  is the ground truth images, i.e. the corresponding labels from training set, and  𝑦𝑗  is the 

predicated segmentation of the input whole sky images. The computed cross-entropy loss values are continuously optimized 25 

using back propagation algorithm (Lecun et al., 2014) until the loss values converge. The final trained model and the best 

model parameters are saved for actual whole sky image segmentation. 
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4 Experiment 

In order to evaluate the performance of the SegCloud model, we conduct extensive experiments on WSISEG database. Firstly, 

segmentation experiments are carried out to evaluate the effectiveness of the SegCloud. Furthermore, the superiority of the 

SegCloud is demonstrated by the comparison with the other traditional cloud segmentation methods. Finally, the accuracy and 

practicability of the SegCloud is further proved by applying the model to long-term observed cloud cover estimation. 5 

4.1 Effectiveness of SegCloud model 

To verify the effectiveness of the SegCloud in segmenting the whole sky images, a series test images are fed to the well-trained 

SegCloud model and the segmented images are obtained. Some representative segmentation results are illustrated in the second 

row of Fig. 4. The figure shows that the clouds, sky and sun, are marked in white, blue and black respectively, which denotes 

that the SegCloud successfully segments the whole sky images. 10 

 

Furthermore, the effectiveness of the proposed SegCloud model is objectively quantified by calculating the segmentation 

accuracy. The labels of the test set are set to the ground truths and the segmentation accuracy of the SegCloud is calculated by 

comparing the segmentation result with the ground truth, as defined in Eq. (3). The average segmentation accuracy is also 

performed using Eq. (4). 15 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇

𝑀
=  

𝑇𝑡𝑐𝑙𝑜𝑢𝑑+𝑇𝑡𝑠𝑘𝑦

𝑀
 ,                                                                                                                                               (3) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_accuracy =
1

𝑛
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖

𝑛
𝑖=1  ,                                                                                                                                   (4) 

where T denotes the number of correctly classified pixels, which is the sum of true cloud pixels 𝑇𝑡𝑐𝑙𝑜𝑢𝑑 and true clear sky 

pixels 𝑇𝑡𝑠𝑘𝑦; 𝑀 denotes the total number of pixels (excluding background regions) in the corresponding cloud image; and 𝑛 is 

the number of the test images. In this experiment, we have totally 60 test images, where 10 for clear sky images, 10 for overcast 20 

sky images and 40 for partial cloud images.  

 

As reported in Table 1, SegCloud achieves a high average accuracy of 96.24%, which further objectively proves the 

effectiveness of the SegCloud model. Moreover, SegCloud performs very well on whole sky images with different cloud cover 

conditions which achieves 96.98% accuracy on clear sky images, 95.26% accuracy on partial cloud images, near-perfect 25 

accuracy 99.44% on overcast sky images. These experimental results show that the SegCloud is effective and accurate for 

cloud segmentation, which could provide a reference for future cloud segmentation research.   

4.2 Comparison with other methods 

To verify the superiority of the proposed SegCloud model, SegCloud is compared with two other conventional methods using 

the test set of the WSISEG database:  30 
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(1) R/B threshold method: considering the camera parameters and the atmospheric environment, the fixed ratio of red and blue 

channel values is set to 0.77 (Kreuter et al., 2009). 

(2) Otsu algorithm (the adaptive threshold method): the threshold is automatically computed according to the whole sky 

images to be segmented. (Otsu, 2007). 

 5 

We use the proposed SegCloud model, R/B threshold method and Otsu algorithm to segment the whole sky images of the test 

dataset. Some representative cloud segmentation results are presented in Fig. 4. It can be seen that Otsu algorithm has poorly 

performance to segment whole sky images, because it requires pixels of the same class to have similar gray value but clouds 

appear to be opposite. The R/B threshold method has better segmenting results compared with Otsu algorithm. However, the 

segmenting accuracy is poor especially for circumsolar areas, as shown in Fig. 4(a), (b) and (c). The reasons may be that the 10 

circumsolar areas often have similar texture and intensity to the clouds due to the forward scattering of visible light by 

aerosols/haze and the dynamic range limitation of the detectors of the sky imager (Long and Charles, 2010). Traditional 

methods merely utilize the low-level vision cues to segment images, which tend to misclassify the pixels near the sun. However, 

SegCloud performs excellent segmentation than the other two conventional methods, especially the segmentation advantages 

in the area near the sun. This is because that SegCloud learns from the given calibration database and constantly mines the 15 

deeper cloud features. So it has a better ability to identify circumsolar areas even though these pixels have textures and 

intensities that are similar to those of clouds.  

 

To objectively verify the performance of the SegCloud, the average segmentation accuracy of three algorithms is also 

calculated on the test dataset. As described in Table1, SegCloud obtains a much higher average accuracy than the other two 20 

methods, and achieves the best segmentation performance whatever for clear sky images, partial cloud images or overcast sky 

images, which shows the advantages of the proposed SegCloud model.  

 

In summary, these experimental results show that the proposed SegCloud model outperforms conventional methods, and 

provides more accurate cloud image segmentation.  25 

4.3 Application of SegCloud in cloud cover estimation 

To further verify the accuracy and practicability of SegCloud, we apply this model in cloud cover estimation and compare its 

derived cloud cover with human observation from 08:00 to 16:00 LT, July 1st to 31st in 2018. First, SegCloud derives the 

cloud cover information through segmenting corresponding whole sky images acquired by all-sky-view camera ASC100. For 

the comparison purposes, the cloud cover of simultaneous human observation are provided by Anhui Air Traffic Management 30 

Bureau, Civil Aviation Administration of China, where ASC100 is located. The well-trained human observers archive cloud 

cover every hour both day and night through dividing the sky in oktas. Thus, the cloud cover estimated by SegCloud is 

multiplied by eight to be consistent with the human observation. 
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The total 279 pairs of cloud cover data are available and the comparison results are shown in Table 2. The correlation 

coefficient between SegCloud and human observation is high (0.84). Statistically, for all cases, the error (i.e. the cloud cover 

difference between SegCloud and human observation) within ±1/8 oktas is 75.3%, and the error within ±2/8 oktas is 90.9%. 

These results clearly show that the proposed SegCloud model has ability to accurately segment the whole sky images, and 5 

provides reliable cloud cover information. Moreover, the cloud cover derived by SegCloud and human observation have great 

agreement on the cases of clear sky (0/8 oktas), indicating SegCloud has better cloud segmentation performance for the 

circumsolar areas. These experimental results prove the accuracy and practicability of SegCloud and show its practical 

significance for the future automatic cloud cover observations.  

5 Conclusion 10 

In this study, a novel deep CNN model named SegCloud is proposed and applied to accurate cloud image segmentation. 

Extensive segmentation results demonstrate that the SegCloud model is effective and accurate. Due to its strong ability in 

cloud feature representation and advance cloud feature extraction, SegCloud outperforms the traditional methods significantly. 

Compared with human observation, SegCloud also provides reliable cloud cover information through computing the 

percentage of cloud pixel to all pixels, which further proves its accuracy and practicability. Moreover, we use photo editing 15 

software to construct a new database, which consisting of 400 whole sky images and identified labels. In our next work, the 

complex cloud images, such as images under heavy haze and fog, must be added to our database to improve its integrity. In 

addition, SegCloud will be further optimized using expanded database to improve the recognition accuracy in complex weather 

conditions. Based on cloud segmentation, besides the cloud cover, the cloud base altitude estimation and the cloud phase 

identification as well as the cloud movement are also crucial for meteorological applications and need to be elaborated in the 20 

future using our self-made all-sky-view camera. 
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Fig. 1: (a) the apperance of ASC100. (b) the whole sky images captured by ASC100. (c) the functional specifications of 

ASC100. 

 
 5 

(a) SWIMSEG Database (b) HYTA Database

(c) WSISEG Database
 

Figure 2: Representative sky images and their corresponding labels from (a). SWIMSEG database, (b). HYTA database 

and (c). WSISEG databases. The labels of the SWIMSEG and HYTA databases are binary images, where zero 

Field of view 180°

Imaging period 10 minutes

Image resolution 2000×1944

Operating temperature -45°~ 55°

Dimension and weight 30×30×40 cm 30kg

Power supply AC220V/50HZ

Functional Specifications
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represents clear sky while one represents the cloud. While for the labels of the proposed WSISEG database, clouds, 

sky, and undefined areas (including sun and backgrounds) are marked with gray values 255, 100, and 0, respectively. 

Compared with SWIMSEG and HYTA database, the proposed WSISEG database has more advantages to reflect 

whole sky condition. 

 5 

 

 
 

Figure 3: Illustration of the proposed SegCloud architecture. Overall, the networks contains an encoder network, a corresponding 

decoder network and a final softmax classifier.  10 
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Figure 4: Examples of segmentation results with three algorithms. The original images are presented in the top line, 

and the segmentation results of SegCloud model, R/B threshold approach, and Otsu algorithm are presented in the 

second, third, and last lines, respectively. Clouds, sky and sun are marked in white, blue and black. Masks are finally 

used in all result images to remove buildings around the circle for improved comparison of the sky and clouds. 5 

 

Table 1: Segmentation accuracy (%) of three methods for clear sky images, partial cloud images and overcast sky 

images.  

Method Clear sky Partial cloud Overcast sky Average 

Otsu 72.54 56.74 41.64 56.86 

R/B threshold 70.63 81.36 90.95 81.17 

SegCloud 96.98 95.26 99.44 96.24 
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Table 2: Comparison of the derived cloud cover between SegCloud and human observation. The cloud cover provided 

by human observation are set to ground-truth, and the error is defined as the cloud cover estimated by SegCloud minus 

the ground-truth. The percentages of the error within ±1/8 oktas and the error within ±2/8 oktas are presented below. 

The correlation coefficient between SegCloud and human observation is also calculated. 

Human observation (eighths) Error within ±1/8 oktas (%) Error within ±2/8 oktas (%)  Correlation 

0 97.0 100 

 

1 91.6 100 

2 64.7 100 

3 52.6 94.7 

4 50.0 75.0 

5 68.3 85.4 

6 83.3 91.7 

7 90.9 95.5 

8 98.1 100 

All 75.3 90.9 0.84 

 5 
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